VI: Chlorinated vs Petroleum Hydrocarbons

Key topics

- Differing characteristics between petroleum and chlorinated solvents
- Petroleum chemistry and biodegradation
- Multiple lines of evidence
- ► Conceptual Site Model

Morning

Learning Objectives

At the end of this module, the learner should be able to:

- Understand the differences between PVI and CVI
- Understand the basic principles of vapor movement.
- Understand the basics of a conceptual site model (CSM) for the PVI pathway
- Recognize the significant role aerobic biodegradation plays in limiting the PVI pathway potential

LNABL

Differences Between PVI and CVI

Residual

DNAPL

Variable	PVI	CVI
Type of chemical	petroleum hydrocarbon	chlorinated hydrocarbon
Example	benzene	tetrachloroethene (PCE)
Source Type	LNAPL	DNAPL
Aerobic biodegradation	Consistently very rapid	consistently very limited
Vapor intrusion potential	low	high
Degradation products	CO ₂ , H ₂ O	intermediates

PVI: Experience from PVI Investigations

KEY POINT:

- For petroleum sites, vapor intrusion is generally associated with i) direct impacts or ii) LNAPL sources, but not diffusion of vapors from dissolved plumes.
- Delineation of vapor sources is important for screening

Aliphatic and Aromatic Compounds

Crude oil contains many types of hydrocarbons, including paraffins, isoparaffins, aromatics, naphthenes, and olefins.

Understanding the Chemistry of Petroleum

Mixtures of hydrocarbons

Source: Haley & Aldrich

Which Petroleum Fuels have the Greatest PVI Potential?

ITRC PVI-1, Figure 2-3

www.itrcweb.org

Typical PVI Conceptual Site Model

Conceptual Site Model and Vertical Separation Distance

- Vertical screening distances can be used when biodegradation interface occurs at a distance away from the receptor
- If soil above a vapor source is 'clean' then building may be screened out
- If soil above the vapor source is 'dirty' then additional investigation may be necessary to determine if PVI pathway is complete

PVI Conceptual Site Model Surrounding Soils are Clean

11

PVI Conceptual Site Model – Surrounding Soils are Dirty

Fixed Air Gases

Methane Considerations

- ► Colorless, odorless gas, 1.8 ppmv (1260 µg/m³) in the atmosphere (most abundant organic compound on Earth)
- Main component of natural gas (odorant added)
- Methane also present at virtually all hydrocarbon spills
- Potential safety hazard (in air) 人用于学习交流,禁止用于商业用途。
 - Upper Explosive Limit (UEL) = 15%
 - Lower Explosive Limit (LEL) = 5% ($35 \times 10^6 \, \mu g/m^3$)

Aerobic Biodegradation Basics

KEY POINT: Aerobic biodegradation can limit transport of PHC vapors and preclude VI.

Aerobic Biodegradation - Limiting Potential for PVI

LNAPL Source Shallow Dissolved Phase Sources **PHC-degrading** Henry's Law bacteria found in Unsaturated all environments Aerobic Vertica & can consume (Oxygen-rich) Aerobic Separation (Oxygen-rich) Distance hydrocarbons Unsaturated High Zone Separation Water rapidly in the Distance Aerobic Table Biodegradation Aerobic Interface presence of O₂ Low Biodegradation Interface Water Table High Anaerobic Saturated Zone Water (Oxygen-depleted) Zone. Raoult's Law **LNAPL** Legend Smear Zone Low - oxygen gas (O₂) Water Table - petroleum vapors Saturated Zone - residual LNAPL

ITRC PVI-1, Figure 3-1

www.itrcweb.ora

Petroleum Vapors Biodegrade Rapidly

- Petroleum biodegradation
 - Occurs reliably (even in hot and cold climates)
 - Microorganisms are ubiquitous
 - Starts rapidly
 - Short acclimation time
 - Occurs rapidly "Instantaneously"

 Atmospheric air (21% Oxygen; 275 g/m³ oxygen) provides the capacity to degrade 92 g/m³ hydrocarbon vapors (92,000,000 μg/m³)

Why is this In the presence of O₂, aerobic degradation rate significant? overtakes migration rate.

Is There Enough O₂ under Buildings to Support Biodegradation?

ANSWER: Generally, **Yes**, even modest O₂ transport yields sufficient aerobic biodegradation in most cases

禁止用于商业用途。

KEY POINT: Two key factors – both needed – to run out of oxygen:

- Limited oxygen transport below the foundation
- High oxygen demand

Site-Specific Features

- ▶ Source
 - Degradable vs. non-degradable
 - VOCs vs. SVOCs
 - Vadose zone vs. groundwater
 - NAPL or not
- Pathway
 - → Pointusion vs. advection dominated 学习交流,禁止用于商业用途。
 - Barriers: wet clay-rich layers, freshwater lens
 - Preferential pathways: high-K fill, openings in building envelope
- Receptor
 - Building pressure/vacuum, ventilation rates
 - Interior sources (background)
 - Sensitive populations
- Emerging concept "Taxonomy" of VI sites (Johnson, 2008)

Multiple Lines of Evidence (MLE)

- Chemistry
- Soil properties
- Weather data
- 比资料IT Cas pump tests 独家提供。仅用于学
 - ► HVAC monitoring
 - Building pressure manipulation
 - Degradation
 - Modeling

MLE: Chemistry

- Groundwater
- ▶ Soil
- ▶ Near slab soil gas
- Sub-slab soil gas

MLE: Soil Properties

Coring and Visual Inspection

Flow, Vacuum, and Permeability

Particle Size Distribution

Porosity and Moisture Content

www.itrcweb.org

MLE: Weather Data

Barometric and Differential Pressure

Seasonal Trends from Weather Effects

Soil Gas Pressure over Time

Wind Speed vs. Building Vacuum

MLE: Gas Pump Tests

Gas Pumping Tests

150 600 -HPV-1 PID HPV-2 PID HPV-1 TO-3 500 120 HPV-2 TO-3 ppm by volume TPH-GRO in mg/L by 400 300 60 PID in 200 30 100 10 100 1000 **Cumulative Volume Purged in Liters**

Concentration vs. Volume Purged

Analysis of Pneumatic Properties

MLE: HVAC Monitoring

Pressure/Ventilation Testing

Electromagnetic Flow Meters

Smoke Pen

Test and Balance Reports

Building Ventilation Rates

ANSI / ASHRAE Standard 62.1 – 2004 Ventilation for Acceptable Indoor Air Quality

Building Type Air Exchange Rate (# / day)

USEPA Default (Residential) 6		
Office Space	12	
Supermarket	17	
Classroom	68	
Restaurant	102	

Key Point: Buildings designed for high density use will have high air exchange rates

Courtesy: Tom McHugh, GSI

MLE: Building Pressure Manipulation

Adjust HVAC to pressurize building – do [VOCs]_{IA} drop? IA = Indoor Air

Berry-Spark et. al., 2005

MLE: Degradation

Field Screening for O₂ and CO₂

www.itrcweb.org

MLE: Modeling

1-D J&E Model with Biodegradation

3-D Abreu and Johnson Model

Is This Your Site?

Conceptual Site Model (CSM)

Simplified version (pictures and/or descriptions) of a complex real-world system that approximates its relationships

Components of a CSM

- Underground utilities and pipes
- Existing and potential future buildings
- Construction of buildings
- Type of HVAC system
- 比资料TSOIKStratigraphy和网独家提供。仅用于学习交流,禁止用于商业用途。
 - Hydrogeology and depth to water table
 - Receptors present (sensitive?)
 - Nature of vapor source
 - Vadose zone characteristics
 - Limits of source area and contaminants of concern
 - Surface cover description in source and surrounding area
 VI Guideline A

www.itrcweb.org

VI Guideline Appendix B

CSM for Petroleum Vapors

Conceptual Site Model Other Factors - Fresh-Water Lens

- Assess off-gassing with combined shallow GW and deep soil gas samples
- Map "extent" in soil gas before selecting buildings for intrusive samples

Conceptual Site Model Other Factors – Geologic Barrier

- Soil cores to assess stratigraphy, soil texture, porosity, and moisture content
- Measure flow and vacuum in soil gas probes during purging and sampling
- Monitor ambient pressure/vacuum in soil gas probes = f (barometric pressure)
- ▶ Vertical profiles of soil gas concentrations in select locations 非正常人工作。

CVOC in Vadose Zone – Strategy

Diffusion is a relatively predictable process

$$\frac{C}{-} = - erfc \frac{r - a}{\sqrt{4D_{eff}t}}$$

- Semi-infinite uniform half-space with point-source
 - C/Co is the relative concentration at a specified time and distance
 - a is the radius of the source [m]
 - r is the radius at which C/Co is to be calculated [m]
 - D_{eff} is the effective overall vapor-phase diffusion coefficient [m²/s],
 - t is time since diffusion began [s]

CVOC in Vadose Zone – Strategy (continued)

C/Co vs. Distance for Various Times (in years)

www.itrcweb.org

Conceptual Site Model Other Factors – Large Buildings

- Talk with Facilities Engineer review Test and Balance Report
- Monitor sub-slab to building pressure differential over time
- ► Review historic VOC use, storage, handling locations

 PID (photoionization detector) screening at select locations (floor drains, sumps, etc.)

www.itrcweb.org

VI Guideline Appendix C

Conceptual Site Model Other Factors – Source Outside Building

- Review depth of footings vs. water table (barrier?)
- Soil gas and sub-slab samples and pressure differential

Conceptual Site Model Other Factors – Source Beneath Building

- External data not as useful
- May want to consider SVE if concentrations are >> screening levels
- Assess spatial distribution in sub-slab concentrations
- Consider indoor air data with changes in HVAC operation

Conceptual Site Model Other Factors – Vacant Lot

- Start with a cost-benefit analysis for soil gas monitoring program vs. proactive mitigation
 - Avoidance: build away from areas of suspected VOCs
 - Passive barrier (visqueen, HDPE, spray tars)
- 比资料I•rPassive venting (gravel layer and wind-turbines) \$
 - Intrinsically safe design (podium construction)

Complicating Factors for VI Assessments

- Ultra low screening levels
 - Increases chances for false positives
- Inconsistent screening levels
- Allowed assessment methods
- 此资料ITECVaryfamong不gencies提供。仅用于学习交流,禁止用于商业用途。
 - ► Chlorinated vs. petroleum hydrocarbons
 - Treat same way?
 - Allow for bioattenuation how?