Data Evaluation & Background Contamination

Key topics

- Data Quality Review
- Sampling & data quality
- 比资料I Data comparison
 - Background contamination & potential sources
 - Indoor air data evaluation

Afternoon

Petroleum VI Screening

Investigative Approach

仅用于学习交流,禁止用于商业用途。

Data Evaluation

Vapor Control and Site Management

General Remediation

Data Evaluation

- ▶ Main areas:
- Data quality review
 - Data comparison to
- 比资料ITRC**%CREPTINGLEV**例网独家提供。仅
 - Background sources of contamination
 - Other lines of evidence (CSM check)

Data Quality Review

- Program design
 - Well justified scope of work based on CSM
- Field methods
 - Samples representative and reproducible
- 资料 Labaratory, methods 独家提供。仅用于学习交流,禁止用于商业用途。
 - Analysis precise and accurate, reporting limits < targets
 - Quality assurance / quality control
 - Duplicates, replicates, equipment blanks, container certification, outdoor air samples, building survey, etc.
 - Assess consistency with CSM after each phase
 - Compare data to expectations

Sampling Methods Field Methodology

- Was the appropriate sampling methodology employed?
 - Apply what you learned

Power Auger

Sub-slab Soil Gas Sampling

Sampling Methods Lab Methodology

- Was the appropriate lab methodology utilized?
 - Apply what you learned

SUMMA® canister for TO-15

学习交流,禁止用于商业用途。

Source: Hartman Environmental

Geoscience

Data Quality Assessment

- ▶ Two-step process
 - 1. Data Quality: Assessment of the laboratory quality control data, the laboratory report, laboratory narrative chain of custody 用于学习交流,禁止用于商业用途。
 - 2. Data Usability: Based on the results of the data quality evaluates the analytical data and the intended use of the data

KEY The investigator, not the laboratory, is **POINT:** responsible for the usability of data.

Data Quality Assessment Step 1: Data Quality

- Regulatory agency requirements?
- ▶ MUST be performed *prior* to using the data
 - Lab QC requires a number of samples spiked and/or analyzed in duplicate
- 此资料IT® Absence of QG Rexceedances of holding time down 业用途。 recoveries of spikes and/or surrogates, other procedure issues
 - Not unusual for laboratory reports to contain "nonconformances"
 - Many won't affect the usability of the data for the intended purpose
 - Bias low or high? True values lower or higher?

Data Quality Assessment Step 2: Data Usability

- ▶ How does it impact the conclusions?
 - Is it valid or do you need to resample?
 - Understand the uncertainty
- ► How does it impact the conclusions?
- 此资料ITROCanfitancet对hergoals是其therprojecto交流,禁止用于商业用途。
 - Does it align with other lines of evidence?
 - ▶ No data is better than BAD data!
 - BUT Imperfect data may not be all bad

Common Data Quality Issues

- Positive bias
 - Equipment blank samples may show VOCs
 - May also find compounds unrelated to the site
- Negative bias
- 比资料ITRCAdsorptive losses in sample train 了交流,禁
 - Leaks (soil gas and sub-slab)
 - Volatilization losses (groundwater, soil)
 - Variability
 - Spatial, temporal, operator

Exacerbated because target levels are so low

Data Evaluation

Main areas:

Data quality review

AITROSCRECTINGLEVELS网独家提供。仅

- Background sources of contamination
- Other lines of evidence (CSM check)

Data Comparison

- Wide range of options
 - Look-up tables
 - Site-specific attenuation factors
 - Site-specific modeling
- 北资**料□Manyxregulatory□agencies start with something**于商业用途。 conservative
 - Apply to a wide range of sites and site conditions
 - Regions/states/districts likely to vary
 - Some allow for some type of modification

Data Comparison Look-Up Tables

- Easiest to utilize and apply
 - Based on an attenuation factor . . .
 - ... which may be based on a model!
- ▶ Typically conservative
- 比资料ITRCMOMEFSIZe出fitsCall独家提供。仅用于学习交流,禁止用于商业用途。
 - Typically applies to a wide range of sites
 - May be really conservative for your site
 - ▶ If you exceed, can you evaluate further?

Reviewing Attenuation Factors

- Concentration (C) allowed = C_{indoor} / alpha
- Alpha varies with depth and soil type
 - Sub-slab
 - Soil gas
- 比资料ITRC**Groundwater**知网独家提供。仅用于学习交流,禁止用于商业用途。
 - ► Three general sources for alpha values
 - Empirical (EPA database)
 - From models (e.g. J&E Model)
 - Measured with tracers (radon, 1,1-DCE, etc.)

Important Considerations Are the units utilized right?

- A quick check is all it takes!
- Remember:
 - ppbv is NOT equivalent to a μg/L or μg/m³

Biodegradation and Oxygen

- ▶ O₂ in soil and water will promote biodegradation
- ▶ Biodegradation will occur rapidly over a short distance in the presence of >2% O₂ in soil gas.
- ▶ Lack of O₂ (<2%) significantly decreases rate of

Source:

ITRC PVI Table 2-1. General differences between PHCs and CVOCs (USEPA 2012g)

How much Oxygen is Enough?

- ► Atmospheric O₂ (20.95%) is usually sufficient to continually support biodegradation
 - Not a bright line where it starts and stops are levels of grey
- 此资料ITREMORPHITATION,如例是是EMAND用于学习交流,禁止用于商业用途。
 - ► Most states generally concur >2% is a good sign that it can occur (may be up to 5%)

Data Evaluation

- Main areas:
 - Data quality review
 - Data comparison to
 - RCSCREENINGLEVELSN独家提供。仅
- Background sources of contamination
 - Other lines of evidence (CSM check)

Indoor Sources

- Specific sources of indoor air contamination
 - Consumer activities
 - Household products
 - Building materials and furnishings
 - Ambient (outdoor) air

Some Examples of Background Sources

Parts

- ► PCE > 95% by weight
- ► Can also include:
 - TCE
 - Toluene

- Toluene
- Xylene
- Ethylbenzene
- Petroleum

- Benzene
- Naphthalene
- Vinyl chloride
- Formaldehyde

Source (in part): **H&P** Analytical

Indoor Air QualityCleaning Your Dishes?

2,2,4-Trimethylpentane	54	10	ug/m3	1	EL01310	13-Dec-10	13-Dec-
n-Heptane	230	5.0					
Trichloroethene	ND	5.0					
1,2-Dichloropropane	ND	1.0					
1,4-Dioxane	2100	5.0					
Bromodichloromethane	ND	4.0			-		
cis-1,3-Dichloropropene	ND	5.0				\sim	
trans-1,3-trichloroproj 1,3-Dichloroprojave	ioxane	2	100) u	g/m	13	:
Toluene	120	5.0					
1,1,2-Trichloroethane	ND	5.0					
2-Hexanone (MBK)	ND	10					
Dibromochloromethane	ND	5.0					
Tetrachloroethene	ND	5.0					
1,2-Dibromoethane (EDB)	ND	5.0					
Salabure RC版权	所養,	5.0 5.0	环知	口权	N独	家提	是供
m,p-Xylene	27	5.0					
Styrene	ND	5.0					
o-Xylene	16	5.0					
Bromoform	ND	20					
1,1,2,2-Tetrachloroethane	ND	5.0					
4-Ethyltoluene	13	5.0					
1,2,3-Trichloropropane	ND	10	-				-
Bromobenzene 2-Chlorotoluene	phthal	ene	е	31	ug	/m3	3
n-Propylbena ne	ND	10	-	-			
p-Isona pyltoluene	1200	10	ug/m3	1	EL01310	13-D 10	13-Dec-1
1.2 Oichlorobenzene	ND	10					
n-Buty/benzene	ND	10			-		
1.2-Dibromo-Lebloromone	ND	20					
Naphthalene	31	10	*				

eb.ora

Source: Blayne Hartman,

H&P Analytical

It Doesn't Take Much: One Drop of Gasoline in a Room

$$(0.05 \ mL * 0.8 \ \frac{g}{ml} * 1000 \frac{mg}{g} * 1000 \frac{\mu g}{mg})/300 \ m^3$$
 = 133 µg/m³

Source: Richard Rago, Haley & Aldrich

Some Background Sources not Obvious

Analyte	BBQ	Garage	Patio	Closet	
methane	40%	90%	100%	nd (0.1%)	
<i>n</i> -hexane	1700	2000	10000	nd (15)	
<i>n</i> -heptane	460	710	3100	nd (50)	
benzene	270	340	1900	7.9	

Benzene found in Natural Gas

Indoor Sources

Household Products Searchable Database http://householdproducts.nlm.nih.gov/

- Chemical ingredients in specific brands
- 料ITRC版权所有,首环知网独家提供。仅用于学习交流,禁止用于商业用 ▶ Which products contain specific chemical ingredients
- Who manufactures a specific brand
- ▶ Health effects

Caution on the Use of Indoor Air Data

- ► US EPA, Background Indoor Air Concentrations of Volatile Organic Compounds in North American Residences (1990–2005): A Compilation of Statistics for Assessing Vapor Intrusion, EPA 530-R-10-001
 - Measured background in thousands of North American
- 资料ITROMSIDENCES between 1990是md 2005 于学习交流,禁止用于商业用途。
 - Assumed to NOT be associated with vapor intrusion
 - VOCs most commonly detected in indoor air due to background sources included
 - Benzene
 - Toluene
 - Ethylbenzene
 - Xylenes

Common VOCs in Background Indoor Air

USEPA, 2011. Background Indoor Air Conc. of VOCs in North American Residences (EPA 530-R-10-001), Figure 4. www.itrcweb.org

United States Clean Air Act of 1970

Ambient (outdoor) air quality impacts indoor air quality

比资料ITRC版权所有,由环知网独家提供。仅

New York City

Benzene in New Jersey Outdoor Air

Mean outdoor
(ambient) benzene
concentration in the
State of New Jersey
by counties

 New Jersey residential indoor air screening level (IASL) for benzene is 2 μg/m³

Data Evaluation

- Main areas:
 - Data quality review
 - Data comparison to
- ATROSCREENING LEVEL SN 独家提供。仅

 Background sources of
 - contamination
- Other lines of evidence (CSM check)

COCs = Multiple Lines of Evidence

- ▶ Site-specific Contaminants of Concern (COCs)
 - COCs not present in soil or groundwater are likely due to background sources
 - Media must be well characterized
- 比资料ITRC Degradation products must be considere 禁止用于商业用途。
 - Review Building Survey are consumer products present that contain the compounds detected that are not COCs?

Site-specific Chemicals of Concern

PCE = ND (gw)

Breathing Buildings

PCE Not detected (gw)

Is this vapor extrusion?

Constituent Ratio Example

Compare sub-slab soil
gas and indoor air
TCE and DCE attributable
to vapor intrusion

提供。仅用GF与到G5x,DGE用于商业用途。

PCE = 2.5x TCE

TCE = 0.5x DCE

PCE << TCE

PCE likely from indoor background source

Constituent Ratio Example #2

Constituent ratio for indoor air does NOT match the ratio for sub-slab soil gas

仅用天堂 3 容流 D 禁止用于商业用途。

TCE 1000 ug/m³ DCE 2000 ug/m³

TCE = 0.5x DCE

Most TCE in indoor air likely from a background source, but the rest (~10 μg/m³) may still be unacceptable

Data Comparison Next Steps

- Should I further develop detailed site specific cleanup values?
 - Generally "Yes":
 - Petroleum especially if bio can be considered!
- 比资料ITRC版权所有,Brank the assumptions utilized,禁止用于商业用途。
 - Probably not:
 - Site matches assumptions
 - Source is close and/or in contact
 - Large exceedances for CVI
 - Can you use it as a line of evidence?

Data Comparison Site Specific Value Development

- ► Typically a model . . .
 - . . . maybe an attenuation factor
 - Use J&E model or BIOVAPOR
 - Can you develop a site-specific attenuation factor?
- 比资料IT**Less conservative** 独家提供。仅用于学习交流,禁止用于商业用途。
 - ... though still may be!
 - Using actual site inputs

Data Evaluation Summary

- Data Quality Review
 - Both sampling approach and lab quality
- Background contamination
- 此资料ITec**Indoor sources and ambient**用 air quality impact
 - Data review & comparison
 - COCs
 - Constituent ratios
 - CSM and sanity check

