## Vapor Control and Site Management



#### **Key Topics:**

- Vapor Control and Site Management vsRemediation Strategies
- ► Types of Vapor Control and Site Management
- Evaluate and select a strategy for addressing an unacceptable human health risk
- Importance of community engagement

#### **Afternoon**

Petroleum VI Screening **Investigative Approach Data Evaluation Vapor Control and Site Management General Remediation** 

# Why Vapor Control and Site Management?



- ➤ Your site screens in
  - Need to address a short term risk
  - Time/redevelopment issues
  - For PVI it is a result of steps 1-8
- ► Cheaper to mitigate than more investigation
- ► Other reasons to mitigate
  - Political
  - Resident &
  - More

#### **Considerations of Risks**



- ▶ Short term
  - Explosive or flammable conditions
  - Odor complaints
  - Acute health issues
- Long term
  - Long term exposure and health issues

### Vapor Control Strategies



- Mitigation approaches
- Remediation approaches
- Institutional controls

or any combination of these approaches





ITRC PVI-1, Figure 6-1. Small-scale soil vapor extraction (SVE) system designed to address the source of vapors and protect building. Photo Source: Vapor Mitigation Sciences, LLC.

KEY POINT: Both short-term and long-term risks should be considered to determine the appropriate response action

# **Vapor Control Strategies**





# Mitigation vs Remediation Strategies



### Mitigation

- Often only addresses the exposure, not the vapor source
- Rarely a permanent solution
- Can be implemented in short time-frames
- Cost more short term but often requires maintenance

#### Remediation

- An action taken to remedy a situation
- Eliminates or removes an identified health risk
- Commonly requires detailed specifications

## **Factors Unique for PVI Mitigation**



- Soil/groundwater impacts less extensive
- ► Easier to remediate than chlorinated solvents
- Petroleum vapors limited by bioattenuation
- Introduction of oxygen below building may reduce or eliminate impacts
- ► High concentrations potentially explosive/flammable

KEY POINT: The unique properties of petroleum VOCs may affect the appropriate response action

## Vapor Control System Closure for PVI



- ▶ Vapor control systems may not be necessary in the near future, which is different than CVI
  - Residents need to understand this concept
  - What parameters will be used to determine closure
  - How will those parameters be verified
  - Who will verify those parameters
  - What happens to the vapor control system now that it is no longer needed

# **Strategy Option Environmental Remediation**





Remediation

- ► Remedial options in lieu of building controls
  - Source near building
  - VI related to preferential pathway
  - May require effluent treatment
    - Can be problematic for building

controls



Source: Source: Vapor Mitigation Sciences, LLC

www.itrcweb.org

# **Strategy Option Institutional Controls**





- ► Placed on a deed or property and could
  - Restrict on where or how to build
  - Requiring additional screening or evaluation prior to use
  - Restrict the type of use to a specific use like
    - Nonresidential
    - Industrial
- ► ITRC guidance on Long Term Contaminant Management Using Institutional Controls

# Strategy Option Mitigation – Building Control Technologies





- ► Understand basic principles behind each approach, so that you can
  - Understand strengths and weaknesses of each approach
     Ensure the best approach is selected based on building and site conditions
  - Deal with unusual conditions

# Strategy Option Mitigation – Building Control Technologies





- ► Common Methods that are utilized:
  - Active Venting or Depressurization Systems
    - Sub-Slab Depressurization (SSD)
    - Different variations of SSD
  - Aerated Floors
  - Barriers
  - Others

## **Active Venting**



Active venting layers rely on fans to create suction (i.e., depressurize venting layer)



# **Sub-Slab Depressurization (SSD)**





# **SSD Variations** Sub-Membrane Depressurization (SMD)





# **SSD Variations Block Wall Depressurization**





# **SSD Variations Foundation Drain Depressurization**





### **Aerated Floor System**



- ► Forms create continuous cavity below slab
- Passive or active venting





Source: Vapor Mitigation Sciences, LLC

Source: Pontarolo Engineering, Inc.

No product endorsement intended by this presentation

www.itrcweb.org

## **Barrier Concept**



Vapors must diffuse or flow laterally



\* No venting layer

#### **Barriers**



- Not all barriers are equal
  - Diffusion Coefficient is important for the contaminant





Source: Land Sciences Technologies

Source: LBI Technologies, Inc.

No product endorsements intended by this presentation

# Passive Venting Mechanisms Often a Component of Barriers



- Passive venting layers rely on diffusion and natural gradients
- Passive venting may not occur naturally at all times
- ▶ Passive venting primarily new construction
  - May be square footage or concentration dependent.



## **Passive Venting Layers**



▶ Provide vapor pathway to reduce C<sub>ss</sub>



KEY POINT:

May not be approved as a "stand-alone" option for CVI

## Other Mitigation Strategies



- Indoor air cleaners
- Passive venting
- Venting layers
- Building Pressurization
- Seal Cracks and Penetrations
- ► Building designed to prevent vapor intrusion



Source: www.allerair.com

### **Diagnostic Testing – Example**



- School in Pennsylvania
- Multiple suction points tested one shown in this example (TP4)
  - Shop vac used to apply ≈-40" water column suction
  - Pressure difference measured at 12 test holes





Source: Vapor Mitigation Sciences, LLC

# Proposed Design and Expected Radius of Influence



#### Proposed Design based on diagnostic testing



Source: Vapor Mitigation Sciences, LLC

Suction points

Blower locations

—Pipe runs

www.itrcweb.org

# Operation, Maintenance, and Monitoring (OM&M)



- ▶ Is it working?
  - Performance measurements
    - Vacuum
    - Flow
    - Pressure differentials
    - Sampling (IA, Sub-slab, Effluent)
    - Monitoring equipment
- ► Frequency of OM&M?
  - Quarterly, semi-annually, annually
  - Residential, commercial, industrial

# Operation, Maintenance and Monitoring



- Operation
  - Electrical costs
  - Emission controls
- ▶ Maintenance
  - Fan replacement
- Monitoring
  - Testing
  - Inspections



Source: Vapor Mitigation Sciences, LLC



Low Pressure
Monitoring Panel
Source: Tom Hatton,
Clean Vapor, Inc.

#### Closure



- When long term cleanup objectives are met
  - Building mitigation will no longer be required
  - Institutional controls can be retired/removed
- Consider how decisions to stop mitigation will be made at the beginning of process
- ► Collect sufficient information during operations and maintenance (O&M) to make closure decisions
  - Develop correlations between subsurface media concentrations and indoor air concentrations

### **Mitigation Resources**



- Chapter 6 (Vapor Control and Site Management)
  - Overview of strategies
  - Factors unique to PVI mitigation
- ► Appendix J (Vapor Intrusion Control)
  - Detailed information on methods, selection factors, design, O&M, closure strategies
  - Table J-1 Summary of Mitigation Methods
    - Technology
    - Typical applications
    - Challenges
    - Range of installation costs

Table J-1. Summary of mitigation methods

| Technology                                                  | Typical applications                                                                                                                  | Challenges                                                                                                                                | Range of installation costs<br>(per ft²)(1)                                  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Active system                                               |                                                                                                                                       |                                                                                                                                           |                                                                              |
| Subslab depres-<br>surization (SSD)                         | Most structures;<br>sumps, drain tiles, aer-<br>ated floors, and block<br>wall foundations may<br>also be depressurized<br>if present | Low permeability and wet soils<br>may limit performance, oth-<br>erwise, highly effective sys-<br>tems; may require a discharge<br>permit | \$2-\$10/ft²; residential sys-<br>tems typically in the \$2-4/ft²<br>range   |
| Subslab vent-<br>ilation (SSV) or<br>Crawl space<br>venting | New and existing<br>structures relies more<br>on influencing air flow<br>over depressurization                                        | Low permeability and wet soils<br>may limit performance, oth-<br>erwise, highly effective sys-<br>tems; may require a discharge<br>permit | \$2-\$10/ft²; residential sys-<br>tems typically in the \$2-4/ft²<br>range   |
| Submembrane<br>depressurization<br>(SMD)                    | Existing structures, crawl spaces                                                                                                     | Sealing to foundation wall, pipe<br>penetrations; membranes may<br>be damaged by occupants or<br>trades people accessing crawl<br>space   | \$1-\$6/ft²; residential systems<br>typically in the \$1.50-\$2/ft²<br>range |



# Community Engagement



- ► How did I get a petroleum vapor intrusion problem?
- ► How long will I have a vapor control system in my home?
- ▶ What is a vapor control system and how does it work?
- ► How do I know when it's over?
- ► Where can I find more information about PVI?



ITRC PVI-1, Appendix K – Frequently Asked Questions Fact Sheets

# Vapor Control and Site Management Summary



- More than one mitigation strategy may be appropriate
- Unique factors may affect mitigation approach
  - Remediation may be more appropriate than building mitigation
  - Consider explosion potential
  - Think outside the box
- ► ITRC PVI guidance provides useful information and references for mitigation
- Remember community engagement